69 research outputs found

    Role of Metformin and AKT Axis Modulation in the Reversion of Hypoxia Induced TMZ-Resistance in Glioma Cells

    Get PDF
    Hypoxia is a key driver of tumor adaptation promoting tumor progression and resistance to therapy. Hypoxia related pathways might represent attractive targets for the treatment of Glioblastoma Multiforme (GBM), that up to date is characterized by a poor prognosis. Primary aim of this study was to investigate the role of hypoxia and hypoxia-related modifications in the effect of temozolomide (TMZ) given alone or in association with the antidiabetic agent Metformin (MET) or the PI3K/mTOR blocker, BEZ235. The study was conducted in the TMZ responsive U251 and resistant T98 GBM cells. Our results showed that during hypoxia, TMZ plus MET reduced viability of U251 cells affecting also CD133 and CD90 expressing cells. This effect was associated with a reduction of HIF-1α activity, VEGF release and AKT activation. In T98 TMZ-resistant cells, TMZ plus MET exerted similar effects on HIF-1α. However, in this cell line, TMZ plus MET failed to reduce CD133 positive cells and AKT phosphorylation. Nevertheless, the administration of the dual PI3K/mTOR inhibitor BEZ235 potentiated the effect of TMZ plus MET on cell viability, inducing a pro-apoptotic phenotype during hypoxic condition also in T98 cells, suggesting the block of the PI3K/AKT/mTOR pathway as a complementary target to further overcome GBM resistance during hypoxia. In conclusion, we proposed TMZ plus MET as suitable treatment to revert TMZ-resistance also during hypoxia, an effect potentiated by the inhibition of PI3K/mTOR axis

    Regional Differences in Cerebral Glucose Metabolism After Cardiac Arrest and Resuscitation in Rats Using [(18)F]FDG Positron Emission Tomography and Autoradiography.

    Get PDF
    BACKGROUND Cardiac arrest is an important cause of morbidity and mortality. Brain injury severity and prognosis of cardiac arrest patients are related to the cerebral areas affected. To this aim, we evaluated the variability and the distribution of brain glucose metabolism after cardiac arrest and resuscitation in an adult rat model. METHODS Ten rats underwent 8-min cardiac arrest, induced with a mixture of potassium and esmolol, and resuscitation, performed with chest compressions and epinephrine. Eight sham animals received anesthesia and experimental procedures identical to the ischemic group except cardiac arrest induction. Brain metabolism was assessed using [(18)F]FDG autoradiography and small animal-dedicated positron emission tomography. RESULTS The absolute glucose metabolism measured with [(18)F]FDG autoradiography 2 h after cardiac arrest and resuscitation was lower in the frontal, parietal, occipital, and temporal cortices of cardiac arrest animals, showing, respectively, a 36% (p = 0.006), 32% (p = 0.016), 36% (p = 0.009), and 32% (p = 0.013) decrease compared to sham group. Striatum, hippocampus, thalamus, brainstem, and cerebellum showed no significant changes. Relative regional metabolism indicated a redistribution of metabolism from cortical area to brainstem and cerebellum. CONCLUSIONS Our data suggest that cerebral regions have different susceptibility to moderate global ischemia in terms of glucose metabolism. The neocortex showed a higher sensibility to hypoxia-ischemia than other regions. Other subcortical regions, in particular brainstem and cerebellum, showed no significant change compared to non-ischemic rats

    Study of the Tissue Distribution of TLQP-21 in Mice Using [18F]JMV5763, a Radiolabeled Analog Prepared via [18F]Aluminum Fluoride Chelation Chemistry

    Get PDF
    TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood–brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10–120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body

    Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor survival. Cytoreduction in association with radiotherapy and temozolomide (TMZ) is the standard therapy, but response is heterogeneous and life expectancy is limited. The combined use of chemotherapeutic agents with drugs targeting cell metabolism is becoming an interesting therapeutic option for cancer treatment. Here, we found that metformin (MET) enhances TMZ effect on TMZ-sensitive cell line (U251) and overcomes TMZ-resistance in T98G GBM cell line. In particular, combined-treatment modulated apoptosis by increasing Bax/Bcl-2 ratio, and reduced Reactive Oxygen Species (ROS) production. We also observed that MET associated with TMZ was able to reduce the expression of glioma stem cells (GSC) marker CD90 particularly in T98G cells but not that of CD133. In vivo experiments showed that combined treatment with TMZ and MET significantly slowed down growth of TMZ-resistant tumors but did not affect overall survival of TMZ-sensitive tumor bearing mice. In conclusion, our results showed that metformin is able to enhance TMZ effect in TMZ-resistant cell line suggesting its potential use in TMZ refractory GBM patients. However, the lack of effect on a GBM malignancy marker like CD133 requires further evaluation since it might influence response duration

    Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics

    Get PDF
    Glioblastoma is the most common and aggressive brain tumor, associated with poor prognosis and survival, representing a challenging medical issue for neurooncologists. Dysregulation of histone-modifying enzymes (HDACs) is commonly identified in many tumors and has been linked to cancer proliferation, changes in metabolism, and drug resistance. These findings led to the development of HDAC inhibitors, which are limited by their narrow therapeutic index. In this work, we provide the proof of concept for a delivery system that can improve the in vivo half-life and increase the brain delivery of Givinostat, a pan-HDAC inhibitor. Here, 150-nm-sized liposomes composed of cholesterol and sphingomyelin with or without surface decoration with mApoE peptide, inhibited human glioblastoma cell growth in 2D and 3D models by inducing a time-and dose-dependent reduction in cell viability, reduction in the receptors involved in cholesterol metabolism (from −25% to −75% of protein levels), and reduction in HDAC activity (−25% within 30 min). In addition, liposome-Givinostat formulations showed a 2.5-fold increase in the drug half-life in the bloodstream and a 6-fold increase in the amount of drug entering the brain in healthy mice, without any signs of overt toxicity. These features make liposomes loaded with Givinostat valuable as potential candidates for glioblastoma therapy

    Antiplatelet, Antithrombotic, and Fibrinolytic Activities of Campomanesia xanthocarpa

    Get PDF
    In a previous work based on popular belief, Campomanesia xanthocarpa Berg., popularly known as “guavirova”, showed to have a potential effect in the control of a number of conditions associated with cardiovascular diseases. The aim of the present work was to investigate the effects of C. xanthocarpa extract (CXE) on antiplatelet, antithrombotic and fibrinolytic activities in mice and in human blood. Mice were treated orally for 5 days with CXE or acetylsalicylic acid and at the end of the treatment period animals were challenged for bleeding, acute thromboembolism and ulcerogenic activity. In addition, we have assessed the prothrombin time and activated partial thromboplastin time (aPTT) after oral administration. In in vitro assays, antiplatelet effects of CXE was evaluated on platelet aggregation, and fibrinolytic activity of the extract was observed by mice or human artificial blood clot degradation. Platelet citotoxicity of the extract was also determined by the LDH assay. Results demonstrated that CXE has a significant protective effect on thrombosis. It also inhibits platelet aggregation without demonstrating cytotoxicity on platelets. CXE slightly prolonged aPTT and showed no ulcerogenic activity after oral administration. In addition, CXE showed a fibrinolytic activity. Thus, C. xanthocarpa showed antiplatelet, antithrombotic and fibrinolytic activities in mice

    Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease

    Get PDF
    Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach

    Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke

    Get PDF
    The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naĂŻve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.We are grateful for the technical assistance received from the Pre-clinical imaging Platform at Vall d’Hebron Institut de Recerca, the Servei RMN at Universitat AutĂČnoma de Barcelona, and the Unitat de Microscopia Òptica Avançada, Facultat de Medicina at the Universitat de Barcelona. This work has been supported under the Euronanomed MAGGBRIS collaborative project by grants from the Spanish Ministry of Science and Innovation (PCIN-2017-090 grant), the Instituto de Salud Carlos III (AC17/00004 with FEDER funds), the Slovak Research and Development Agency under the Contract No.APVV-19-0324 and the Italian Ministry of Health (Ricerca Corrente year 2017 funds); by the Expression of Interest (EoI) for Collaborative Projects on Regenerative Medicine 2019 P-CMR[C]); programs 2017-SGR-1427 and 2017-SGR-765 from the Generalitat de Catalunya; RETICS-INVICTUS PLUS from ISCIII (RD16/0019/0021 with FEDER funds); the ‘Severo Ochoa’ Program for Centers of Excellence in R&D (SEV-2015-0496) and the RYC-2017- 22412 and PID2019-107989RB-I00. A.G has been supported by fellowships from ISCIII (FI17/00073 and MV18/00006), A.R by a visiting-scientist fellowship from ISCIII (BA17/00052) and Y. Z has been supported by the China Scholarship Council (CSC).Peer reviewe

    VizieR Online Data Catalog: Star formation in z~1.5 quiescent galaxies (Gobat+, 2017)

    Get PDF
    Median VIMOS spectrum of 31 BzK-selected massive quiescent galaxies in the COSMOS field, with a median redshift of z=1.5. The observations were carried out during ESO programs 086.A-0681 and 088.A-0671 using the medium resolution grism and GG475 order-sorting filter, with a slit width of 1-arcsec. The 2D data were reduced with VIPGI pipeline, and corrected for redshift and cosmological dimming before stacking. The 1D spectrum was extracted using a 12-pixel aperture. (1 data file). <P /

    Translation Imaging in Parkinson's Disease: Focus on Neuroinflammation

    No full text
    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development
    • 

    corecore